Fully fuzzy linear programming with inequality constraints

Authors

  • E. Behmanesh Department of Mathematics, University of Mazandaran, Babolsar ,Iran.
  • F. Taleshian Department of Mathematics, University of Mazandaran, Babolsar ,Iran.
  • M. Abdolalipoor Department of Mathematics, University of Tabriz, Tabriz , Iran.
  • N. A. TaghiNezhad Department of Mathematics, University of Mazandaran, Babolsar ,Iran.
  • SH. Nasseri Department of Mathematics, University of Mazandaran, Babolsar ,Iran.
Abstract:

Fuzzy linear programming problem occur in many elds such as mathematical modeling, Control theory and Management sciences, etc. In this paper we focus on a kind of Linear Programming with fuzzy numbers and variables namely Fully Fuzzy Linear Programming (FFLP) problem, in which the constraints are in inequality forms. Then a new method is proposed to ne the fuzzy solution for solving (FFLP). Numerical examples are providing to illustrate the method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

fully fuzzy linear programming with inequality constraints

fuzzy linear programming problem occur in many elds such as mathematical modeling, control theory and management sciences, etc. in this paper we focus on a kind of linear programming with fuzzy numbers and variables namely fully fuzzy linear programming (fflp) problem, in which the constraints are in inequality forms. then a new method is proposed to ne the fuzzy solution for solving (fflp). ...

full text

Solving fully fuzzy linear programming

In this paper, a new method is proposed to find the fuzzy optimal solution of fully fuzzy linear programming (abbreviated to FFLP) problems. Also, we employ linear programming (LP) with equality constraints to find a nonegative fuzzy number vector x which satisfies Ax =b, where A is a fuzzy number matrix. Then we investigate the existence of a positive solution of fully fuzzy linear system (FFLS).

full text

solving fully fuzzy linear programming

in this paper, a new method is proposed to find the fuzzy optimal solution of fully fuzzy linear programming (abbreviated to fflp) problems. also, we employ linear programming (lp) with equality constraints to find a nonegative fuzzy number vector x which satisfies ax =b, where a is a fuzzy number matrix. then we investigate the existence of a positive solution of fully fuzzy linear system (ffls).

full text

FUZZY LINEAR PROGRAMMING WITH GRADES OF SATISFACTION IN CONSTRAINTS

We present a new model and a new approach for solving fuzzylinear programming (FLP) problems with various utilities for the satisfactionof the fuzzy constraints. The model, constructed as a multi-objective linearprogramming problem, provides flexibility for the decision maker (DM), andallows for the assignment of distinct weights to the constraints and the objectivefunction. The desired solutio...

full text

A New Method for Solving the Fully Interval Bilevel Linear Programming Problem with Equal Constraints

Most research on bilevel linear programming problem  is focused on its deterministic form, in which the coefficients and decision variables in the objective functions and constraints are assumed to be crisp. In fact, due to inaccurate information, it is difficult to know exactly values of coefficients that used to construct a bilevel model. The interval set theory is suitable for describing and...

full text

Some new results on semi fully fuzzy linear programming problems

There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 4

pages  309- 316

publication date 2013-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023